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Abstract

We extend the notion of Clifford index to reduced curves with pla-
nar singularities by considering rank 1 torsion-free sheaves. We inves-
tigate the behaviour of the Clifford index with respect to the combi-
natorial properties of the curve and we show that Green’s conjecture
holds for certain classes of curves given by the union of two irreducible
components.
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1 Introduction

The Clifford index for smooth curves was introduced by H. Martens in [15]
(see also [12]), and many authors have investigated its relation with the
geometry of smooth curves. If C is a smooth curve and L is an invertible
sheaf, then the Clifford index of L is Cliff(L) = deg(L)− 2h0(C,L) + 2 and
the Clifford index of C is

Cliff(C) = min
L∈Pic(C)

{deg(L)− 2h0(C,L) + 2 : h0(C,L) ≥ 2, h1(C,L) ≥ 2}.

For a smooth curve one always has Cliff(C) ≥ 0, with equality holding
only for hyperelliptic curves. Similarly, Cliff(C) = 1 if and only if C is
trigonal or plane quintic, and Cliff(C) = 2 if and only if C is tetragonal,
or plane sextic (see [16] for a thorough analysis). Indeed, the Clifford index
is closely, but not completely, related to the gonality since by [7] one has
Cliff(C) + 2 ≤ gon(C) ≤ Cliff(C) + 3.

Caporaso in [4] studied the Clifford index of invertible sheaves on semistable
curves finding interesting connections with the combinatorial properties of
the curve and pointing out the problems that can arise if the curve has dis-
connecting nodes. Tenni and the author in [10] considered singular curves,
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either reduced with planar singularities or lying on a smooth surface, and
proved a generalisation of Clifford’s theorem by studying rank 1 torsion-free
sheaves of the form ISωC , where S is a zero dimensional scheme and ωC is
the canonical sheaf.

In this paper we consider reduced curves with planar singularities (e.g.,
semistable curves) and we study nef torsion-free sheaves of rank 1 whose
degree is bounded from above by the degree of the canonical sheaf ωC . We
remind that these curves are always Gorenstein.

Note that, for a curve C with many components the behaviour of the
sections of a torsion-free sheaf and −as a consequence− of the Clifford index
may be rather complicated. Nevertheless, it is possible to find an estimate
for the Clifford index and to show some relations with the canonical ring of
the curve. Indeed, given a reduced curve C = C1 ∪ · · · ∪ Cn, and a rank 1
torsion-free sheaf F on C such that

0 ≤ deg(F|Ci
) ≤ deg(ωC |Ci

) ∀Ci, i = 1, · · · , n (1)

we set Cliff(F) := deg(F) − 2h0(C,F) + 2. Taking into account all the
sheaves that contributes to the Clifford index (see Definition 3.5) we give
the following definition of Clifford index for a reduced curve C

Cliff(C) := min{Cliff(F) : F rank 1 torsion-free sheaf s.t.
F verifies (1) ;h0(F) ≥ 2, h1(F) ≥ 2}.

In Section 3 we prove that this minimum does exist and we show lower and
upper bound for such index, investigating its relation with the combinatorial
properties of the curves, in particular m-connectedness. We remind that a
curve C is m-connected if A · B := deg(ωC |B) − (2pa(B) − 2) ≥ m for any
proper decomposition C = A ∪B (cf. [6, §3]).

More precisely, we prove firstly that Cliff(C) can be negative if C is not
4-connected, bounded from below by −n+ 1, where n is the number of irre-
ducible components of C (see Prop. 3.2) and in Example 3.12 we show that
such bound is sharp providing examples given by chains of curves. More-
over, in Example 3.13 we exhibit a curve C not 4-connected with canonical
sheaf very ample but whose Clifford index is negative, showing that for a
curve with many components the geometric meaning of the Clifford index
is more subtle.

On the contrary, in Thm. 3.6 we prove that Cliff(C) ≥ 0 if C is 4-
connected and in Thm. 3.14 we prove that for every invertible sheaf L one
always has Cliff(L) ≥ 0, independently from the connectedness of the curve.
Finally, in Theorem 3.9 we point out the following constraints occasioned
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by the numerical connectedness of C: if C is m-connected but (m + 1)-
disconnected (that is, there is a decomposition C = A ∪B with A ·B = m)
and it does not contain rational components then

Cliff(C) ≤ min

{
m− 2,

⌊
pa(C)− 1

2

⌋}
.

We remark that our results can still be applied to irreducible curves with
planar singularities. In particular for an irreducible curve C one always has
Cliff(C) ≥ 0, with equality holding iff C is hyperelliptic.

To show that the Clifford index we have introduced above has a geometrical
meaning, in Section 4 we give a proof of Green’s conjecture for am-connected
curve obtained glueing together two smooth curves. More precisely, we
consider a stable curve C = C1 ∪ C2 given by the union of an irreducible
smooth general curve C1 of genus g1 and an irreducible smooth curve C2 of
genus g2, meeting transversally in m distinct points. For such a curve C,
if 4 ≤ m ≤ g1+1

2 and 1 ≤ g2, we show that Cliff(C) = m − 2 and Green’s
conjecture holds for C, i.e., Kp,1(C,ωC) = 0 iff p ≥ pa(C) − Cliff(C) − 1
(where Kp,1(C,ωC) denotes the p-th Koszul group with value in ωC (see
Green’s paper [11]). This result is only a modest novelty, since it is based
on fundamental results of Voisin in [19, 20] and Aprodu in [1], but we hope
it should be helpful in studying curves with many components, e.g., stable
curves.

A second application of our results can be found in the paper [3], where
the authors, in order to characterise Brill-Noether-Petri curves, analyse the
Petri homomorphism for rank 2 vector bundles on a (not necessarily smooth)
curve C by using some results on the Clifford index.
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2 Notation and preliminary results

We work over an algebraically closed field K of characteristic 0.
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Throughout this paper C = C1 ∪ · · · ∪ Cn denotes a reduced curve with
planar singularities. The Ci’s are the irreducible components of C.

A subcurve B ⊆ C is a curve of the form B = Ci1 ∪ · · · ∪ Cik with
{i1, . . . , ik} ⊆ {1, . . . , n}. For every subcurve B ⊆ C we denote by ωB
its canonical sheaf (see [14], Chap. III, §7), by KB a canonical divisor, that
is, a Cartier divisor so that OB(KB) ∼= ωB, and by pa(B) the arithmetic
genus of B, pa(B) = 1 − χ(OB). Note that, by our assumptions, every
B ⊆ C is Gorenstein (i.e., ωB is invertible.)

A decomposition C = A∪B means A = Cj1 ∪ · · · ∪Cjh , B = Ci1 ∪ · · · ∪Cik
such that {j1, . . . , jh} ∪ {i1, . . . , ik} = {1, . . . , n}.

For a given decomposition C = A∪B, we will use the following standard
exact sequences:

0→ OA(−B)→ OC → OB → 0, (2)

0→ ωA → ωC → ωC |B → 0. (3)

where OA(−B) ∼= IA∩B · OA.
If C = A∪B is a decomposition of C, then the intersection product A ·B

is defined as follows

A ·B = deg(ωC |B)− (2pa(B)− 2).

A curve C is m-connected if A ·B ≥ m for every effective decomposition C =
A∪B (cf. [6] for a detailed analysis on Gorentein curves). An m-connected
curve C is said to be (m+ 1)-disconnected if there is a decomposition C =
A ∪B with A ·B = m.

For a decomposition C = A ∪B we will use frequently the key formula

pa(C) = pa(A) + pa(B) +A ·B − 1. (4)

Let F be a rank 1 torsion-free sheaf on C. For every subcurve B ⊆ C the
degree of F on B can be defined by the formula deg(F|B) = χ(F|B)−χ(OB).
A torsion-free sheaf F is said to be nef if deg(F|B) ≥ 0 for every B ⊆ C.

A cluster S of degree degS = r is a 0-dimensional subscheme with lengthOS =
dimKOS = r. A cluster S ⊂ C is subcanonical if the space H0(C, ISωC)
contains a generically invertible section, i.e., a section s0 which does not
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vanish on any subcurve of C. Equivalently S is subcanonical if there exists
an injective map OC ↪→ ISωC (see [10, §2.3]).

Given a subcanonical cluster S, we define its residual cluster S∗ with
respect to a generic invertible section s0 ∈ H0(C,ωC) by the following exact
sequence

0 // Hom(ISωC , ωC)
α // Hom(OC , ωC) // OS∗ // 0

where the the map α is defined by α(ϕ) : 1 7→ ϕ(s0). See [10, Section 2] for
the definition and main properties.

In the following theorem we summarise some basic results proved in [6] on
the relations of m-connectedness with the behaviour of the canonical sheaf
ωC . For a general treatment see [6, §2, §3] and [5].

Theorem 2.1 Let C be a Gorenstein curve, and let ωC be the canonical
sheaf of C. Then

(i) If C is 1-connected then H1(C,ωC) ∼= K.

(ii) If C is 2-connected and C 6∼= P1 then |ωC | is base point free. To be
more precise, P is a base point for |ωC | if and only if there exist a
decomposition C = C1 ∪ C2 such that C1 · C2 = 1 and P is a smooth
point for each Ci satisfying ωC |Ci

∼= ωCi(P ).

(iii) If C is 3-connected and C is not honestly hyperelliptic (i.e., there does
not exist a finite morphism ψ : C → P1 of degree 2) then ωC is very
ample.

(cf. [6, Thm. 1.1, Thm. 3.3, Thm. 3.6] and [5, Proposition 2.4]).

Remark 2.2 Note that for reduced curves the above implications are ac-
tually equivalences. Indeed, (i) is obvious; (ii) follows from the fact that a
disconnecting point is necessarily a base point for |ωC |; (iii) follows since,
given a decomposition C = A∪B with A∩B = {P,Q}, then |ωC | does not
separate the 2 points. See also [5, Proposition 2.4] for a detailed analysis of
the base points of |ωC | on 2-disconnected curves.
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3 Clifford index of reduced curves

3.1 Clifford index of rank 1 torsion-free sheaves

In this section we extend the notion of Clifford index by taking into account
nef rank 1 torsion-free sheaves whose multidegree is bounded from above by
the degree of the canonical sheaf ωC .

Definition 3.1 Let C = C1 ∪ · · · ∪ Cn be a connected reduced curve with
planar singularities and let F be a nef rank 1 torsion-free sheaf.

The Clifford index of F is

Cliff(F) := deg(F)− 2h0(C,F) + 2

First of all, let us consider the case F = ISωC , where S ⊂ C is a subcanoni-
cal cluster, i.e., S is a 0-dimensional scheme such that H0(C, ISωC) contains
a generically invertible section.

Proposition 3.2 Let C = C1 ∪ · · · ∪ Cn be a connected reduced curve with
planar singularities and let S be a subcanonical cluster. Then

Cliff(ISωC) ≥ −n+ 1.

Proof. We argue by induction on the number of irreducible components n.
If the curve C is irreducible or reducible and 2-connected it is a straight-

forward consequence of [10, Thm. 3.8].
If C is connected but 2-disconnected, then we may take a decomposition

C = A∪B, with A, B connected curves such that A·B = 1, i.e. A∩B = {P},
a point which is smooth for both. Let nA be the number of irreducible
components of A and nB be the number of irreducible components of B, so
that n = nA + nB.

Let S be a subcanonical cluster, i.e., assume that H0(C, ISωC) contains
a section s0 which does not vanish on any subcurve of C and consider the
intersection point P . Note that P is a base point for the system |ωC | by
Theorem 2.1, hence without loss of generality we may assume that P∩S 6= ∅.
Indeed, if this is not the case, we may consider a residual cluster S∗ with
respect to s0 ∈ H0(C, ISωC) (see §2). Since P is a base point for |ωC |, then
P must intersect either S or S∗. Serre duality implies that the Clifford index
of S and S∗ coincide (see [10, Remark 2.13]), thus we may work with the
cluster which contains P .

Since P is a smooth point for both the curves and C has planar sin-
gularities, we have the isomorphisms of invertible sheaves ωC |A ∼= ωA(P )
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and ωC |B ∼= ωB(P ). Hence, being P ∩ S 6= ∅, there exists a cluster
TA on A, resp. a cluster TB on B, such that (ISωC)|A ∼= ITAωA, resp.
(ISωC)|B ∼= ITBωB. Note that they are subcanonical, since a generically in-
vertible section in H0(C, ISωC) restricts to a generically invertible section in
H0(A, ISωC |A) = H0(ITAωA), and similarly on B. Therefore by induction
we may assume Cliff(ITAωA) ≥ −nA + 1 and Cliff(ITBωB) ≥ −nB + 1.

We point out that deg(ITAωA) + deg(ITBωB) = deg(ISωC). Consider
now the Mayer-Vietoris sequence

0→ ISωC →
ITAωA
⊕

ITBωB
→ OP → 0. (5)

Firstly, assume that H0(A, ITAωA) ⊕ H0(B, ITBωB) → OP is onto. Note
that this holds when Cliff(ITAωA) is minimal since by [10, Lemma 2.19] the
restriction map H0(A, ITAωA) → OP is surjective. In this case we have
h0(C, ISωC) = h0(A, ITAωA) + H0(B, ITBωB) − 1, hence a straightforward
computation yields Cliff(ISωC) ≥ Cliff(ITAωA) + Cliff(ITBωB). Therefore,
by induction we have

Cliff(ISωC) ≥ Cliff(ITAωA) + Cliff(ITBωB) ≥ −nA − nB + 2 = −n+ 2

If the above map (5) is not surjective on global sections, then in partic-
ular H0(A, ITAωA) → OP is not onto, hence we have that Cliff(ITAωA)
is not minimal by [10, Lemma 2.19], i.e., by induction we may assume
Cliff(ITAωA) ≥ −nA + 2.

Since in this case h0(C, ISωC) = h0(A, ITAωA) + h0(B, ITBωB), then

Cliff(ISωC) ≥ Cliff(ITAωA)+Cliff(ITBωB)−2 ≥ −nA+2−nB+1−2 = −n+1.

�
The following trivial remark will be useful in the proof of Theorem 3.4.

Remark 3.3 Let C = A ∪ B be an effective decomposition of C in non-
trivial subcurves. Let SA ⊂ A be a cluster such that A ∩ B ⊂ SA and let
SB ⊂ B be a cluster such that A∩B ⊂ SB. Consider an invertible sheaf LA
supported on A and an invertible sheaf LB supported on B. Then the two
rank 1 torsion-free sheaves ISA

LA and ISB
LB are supported respectively on

A and B and the sheaf ISA
LA ⊕ ISB

LB is a rank 1 torsion-free sheaf on
C, since the sheaves living on the two curves can be glued together as they
both vanish on the intersection.
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Theorem 3.4 Let C = C1 ∪ · · · ∪ Cn be a connected reduced curve with
planar singularities. Then the following numbers exist and coincide:

(1) min{Cliff(F) : F rank 1 torsion-free sheaf s.t.
0 ≤ deg(F|Ci

) ≤ degωC |Ci
for i = 1, · · · , n;

h0(F) ≥ 2, h1(F) ≥ 2}
(2) min{Cliff(ISωC) : S ⊂ C subcanonical cluster s.t.

h0(C, ISωC) ≥ 2, h1(C, ISωC) ≥ 2}

Proof. By Proposition 3.2 the second minimum exists. It is moreover
obvious that the second set is included in the first, thus such minimum is
bigger than or equal to the infimum of the first set.

To conclude the proof it is enough to prove that for every rank 1 torsion-
free sheaf F in the first set attaining the minimal Clifford index there exists
a subcanonical cluster T such that ITωC ∼= F . This is equivalent to proving
that a rank 1 torsion-free sheaf F with minimal Clifford index is generi-
cally invertible and moreover there exists an inclusion F ↪→ ωC which is
generically surjective.

For the first statement, assume for a contradiction that F itself is not
generically invertible and let B ⊂ C be the maximal subcurve of C such
that every section s ∈ H0(C,F) vanishes identically on B. Consider the
decomposition C = A ∪B. Then by the standard exact sequence

0→ F|A(−B)→ F → F|B → 0

we obtain
H0(A,F|A(−B)) ∼= H0(C,F) (6)

0→ H0(B,F)→ H1(A,F|A(−B))→ H1(C,F)→ H1(B,F)→ 0. (7)

We take the sheaf G ∼= F|A(−B) ⊕ OB(A)(−A) (we write OB(A)(−A) to
emphasise that we are considering it as the Kernel sheaf of the restriction
map OB(A)→ OA∩B). By Remark 3.3, G is a rank 1 torsion-free sheaf and
moreover it verifies the inequalities 0 ≤ deg(G|Ci

) ≤ deg(F|Ci
) for every Ci

since F|A(−B) does not vanish on any subcurve of A.
Then it is immediately seen that OC ↪→ G, i.e., G is generically invertible,

and, since obviously OB(A)(−A) ∼= OB, we obtain

h0(G) = h0(B,OB) + h0(A,F|A(−B)) ≥ h0(A,F|A(−B)) + 1.

Therefore by equation (6) we obtain h0(G) ≥ h0(C,F) + 1 ≥ 3.
Furthermore by equation (7) we have

h1(A,F|A(−B)) = h1(C,F) + h0(B,F)− h1(B,F),
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that is,

h1(G) = h1(B,OB) +h1(A,F|A(−B)) ≥ h1(C,F) + deg(F|B) +h0(OB) ≥ 3.

Hence G is a torsion-free sheaf in the first set such that deg(G) ≤ deg(F),
h0(G) > h0(F) and h1(G) ≥ h1(F); in particular Cliff(G) < Cliff(F), which
is absurd.

Therefore we have OC ↪→ F . Now we show that F ↪→ ωC and that such
morphism is generically surjective. The dual sheaf Hom(F , ωC) satisfies the
same assumptions F does and by Serre duality has the same Clifford index.
Hence thanks to the previous step we have an injection OC ↪→ Hom(F , ωC).
In particular H0(C,OC) ↪→ H0(C,Hom(F , ωC)) = Hom(F , ωC), that is,
there is a map from F to ωC not vanishing on any component. By automatic
adjunction ([6, Proposition 2.4]) we conclude that F ∼= ITωC , for some
suitable 0-dimensional scheme T .

�

3.2 Clifford index of curves

The above theorem allows us to introduce the following notion of Clifford
index for a reduced curve.

Definition 3.5 Let C = C1 ∪ · · · ∪ Cn be a connected reduced curve with
planar singularities. The Clifford index of C is

Cliff(C) := min{Cliff(F) : F rank 1 torsion-free sheaf s.t.
0 ≤ deg(F|Ci

) ≤ deg(ωC |Ci
) for every Ci ;

h0(F) ≥ 2, h1(F) ≥ 2}

As in the smooth case, we say that a rank 1 torsion-free sheaf F contributes
to the Clifford index of the curve C if h0(C,F) ≥ 2 and h1(C,F) ≥ 2.

For 4-connected curves the Clifford index is always non-negative as can
be seen by the following result.

Theorem 3.6 If C is a 4-connected reduced curve with planar singulari-
ties then Cliff(C) ≥ 0, with equality holding if and only if C is honestly
hyperelliptic.

Proof. By [10, Theorem B ] if C is 4-connected then for every rank 1
torsion-free sheaf F we have h0(C,F) ≤ degF

2 + 1.
Moreover the above mentioned theorem shows that if equality holds then

F ∼= ITωC , where T is a subcanonical cluster and, as in the smooth case,
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either T ≡ 0, KC or C is honestly hyperelliptic and T is a multiple of the
honest g1

2.
�

Corollary 3.7 If C is an irreducible curve with planar singularities then
Cliff(C) ≥ 0 and it is 0 if and only if C is hyperelliptic.

If C has many components, numerical m-connectedness plays a relevant
role in the the computation of the Clifford index. Indeed, we have the
following

Proposition 3.8 Let C = C1 ∪ · · · ∪ Cn be an m-connected reduced curve
with planar singularities.

Assume there exists a decomposition C = A ∪ B such that A · B = m,
pa(A) ≥ 1, pa(B) ≥ 1. Then there exists an invertible sheaf F such that
Cliff(F) = m− 2, h0(F) ≥ 2, h1(F) ≥ 2.

Proof. Consider the decomposition C = A∪B with A ·B = m, pa(A) ≥ 1,
pa(B) ≥ 1. Note that A and B are numerically connected by minimality of
m (see [10, Lemma 2.8]).

If m = 1 then by Thm. 2.1 there exists a base point P for the canonical
system. Thus Cliff(IPωC) = −1 and we may conclude.

From now on we may assume that m ≥ 2 and in particular that the
system |ωC | is base point free. Choose a generic s ∈ H0(A,ωC |A) and take
the effective divisor ∆ = div(s). Since |ωC | is base point free, ∆ is the
union of smooth points and moreover by our construction we may assume
∆ ∩B = ∅. Consider the invertible sheaf F := OC(∆). We have

F|A ∼= ωC |A , F|B ∼= OB.

In particular F(−B)|A ∼= ωA and we have the exact sequence

0→ H0(A,ωA)→ H0(C,F)→ H0(B,OB)→
→ H1(A,ωA)→ H1(C,F)→ H1(B,OB)→ 0.

But H0(C,F) does not vanish on B by our construction, hence

h0(C,F) = h0(B,OB) + h0(A,ωA) = 1 + pa(A) ≥ 2

h1(C,F) = h1(B,OB) + h1(A,ωA) = 1 + pa(B) ≥ 2

since both A and B are numerically connected.
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Finally, by the above computation we get

Cliff(F) = degC(OC(∆))− 2h0(C,OC(∆)) + 2 =

= 2pa(A)− 2 +m− 2 · (1 + pa(A)) + 2 = m− 2.

�
As an immediate consequence we obtain the following theorem.

Theorem 3.9 Let C = C1 ∪ · · · ∪ Cn be a connected reduced curve with
planar singularities. Assume Ci 6= P1 for every i = 1, · · · , n.

If C is m-connected but (m+ 1)-disconnected, then

Cliff(C) ≤ min

{
m− 2,

⌊
pa(C)− 1

2

⌋}
.

Proof. First of all, let us show that Cliff(C) ≤
⌊pa(C)−1

2

⌋
by a degeneration

argument.
With this aim, we point out that Ext1(ωC ,OC) is a torsion sheaf and

Ext2(ωC ,OC) = 0 since C is a reduced 1-dimensional Gorenstein scheme
with planar singularities. Moreover we have ωC ∼= Ω1

C (cf. [18, Chap. IV]),
hence, by the Grothendieck local-to-global spectral sequence for Ext, we
obtain Ext2(Ω1

C ,OC) = 0. By standard arguments in deformation theory,
this vanishing implies that there are no obstructions to deform C (see e.g.,
[17, Prop. 2.4.8, Ex. 2.4.9]).

Therefore we can consider a one-parameter degeneration f : X → T ,
where X is a smooth surface and T an affine curve, i.e., we can assume that f
is flat and proper and that there is a point t0 ∈ T such that f−1(t0) := C0

∼=
C, whilst for every t 6= 0, f−1(t) := Ct is a smooth curve of genus g = pa(C).
For each integer d, let Picdf be the degree-d relative Picard scheme of f
parameterizing invertible sheaves of degree d on the fibres of f (see e.g.
[13]). Then, for every invertible sheaf F in Picdf we have Cliff(F|Ct

) ≤⌊pa(C)−1
2

⌋
. Since h0(F|Ct

) and h1(F|Ct
) are semicontinuous function in t, if

F|Ct
contributes to the Clifford index for some t, then F|C0

contributes to
the Clifford index of C0 and moreover by definition it is

Cliff(F|C0
) ≤ Cliff(F|Ct

) ≤
⌊
pa(C)− 1

2

⌋
.

Now let us show that Cliff(C) ≤ m − 2, where m := min{A · B : C =
A ∪B,A 6= ∅, B 6= ∅}.
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Take a proper decomposition C = A ∪ B with A · B = m. Note that
pa(A) ≥ 1, pa(B) ≥ 1 by our assumptions, and A and B are numerically
connected by minimality of m (see [10, Lemma 2.8]). Therefore by the
above Proposition 3.8 there exists an invertible sheaf F = OC(∆) which
contributes to the Clifford index of C and whose Clifford index verifies
Cliff(F) = m− 2.

�

Remark 3.10 If we restrict our attention to stable curves, i.e., if we con-
sider Mg, the moduli space of stable curves of genus g = pa(C), it is worth
mentioning that the Clifford index, as defined in Definition 3.5, is not the
limit of the Clifford index of smooth curves. More precisely, if a curve C is
the limit of smooth curves Ct with Cliff(Ct) ≤ γ, then by semicontinuity we
still have Cliff(C) ≤ γ, but the converse does not hold. Indeed, one can see
that the locus of m-connected stable curves has codimension m inMg, and
Theorem 3.9 shows that those curves have Clifford index at most m−2. On
the contrary, one can consider Mr

g,d, the locus consisting of smooth curves
carrying a grd. For suitable values of r and d, such locus consists of smooth
curves having Clifford index ≤ m− 2, and for small value of m, it has a far
bigger codimension than m. Therefore a simple dimension count shows that
Cliff(C) may not coincide with the limit Cliff(Ct).

Remark 3.11 Let C be a m-connected, but (m+ 1)-disconnected, reduced
curve of arithmetic genus pa(C) > 0 and let C = A∪B be a decomposition
of C in two connected curves of arithmetic genus pa(A), respectively pa(B),
such that A ·B = m.

If m ≤ pa(A) + pa(B) + 2 then it is m − 2 ≤
⌊pa(C)−1

2

⌋
. Therefore it is

easy to construct stable curves with given Clifford index just by taking m
satisfying the above relation.

3.3 Examples of curves with negative Clifford index

In this section we are going to show two examples of curves having negative
Clifford index. The first example shows that the inequality of Proposition
3.2 is sharp. The second example shows that for curves not 4-connected the
geometric interpretation of the Clifford index is more subtle.

Example 3.12 Let C =
⋃n
i=0 Γi be a chain of smooth curves Γi, i.e. Γi ·

Γi+1 = 1, otherwise Γi · Γj vanishes.

Γ0 Γ1 Γn−1 Γn
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Assume that every Γi has positive genus and set S = SingC.
Then h0(C, ISωC) =

∑n
i=1 pa(Ci) = pa(C). Therefore we obtain

Cliff(ISωC) = 2pa(C)− 2− degS − 2h0(C, ISωC) + 2 = −n+ 1.

Note that in the above example every point in S is a base point of |ωC |. Now,
let us point out that this is not always the case. Indeed, if C is 3-connected
but not 4-connected (i.e., there exists a decomposition C = A∪B such that
A ·B = 3) then it might happen that Cliff(C) < 0 even thought ωC is very
ample and normally generated, as shown in the following example.

Example 3.13 Take C =
⋃5
i=0 Γi and suppose that pa(Γi) ≥ 2 for every i.

Suppose moreover that the intersection products are defined by the following
dual graph, where the existence of the simple line means that the intersection
product between the two curves is 1.

Γ0 Γ1

Γ4 Γ3

Γ5 Γ2

In this case ωC is very ample and normally generated by [9, Thm. 3.3].
For simplicity, assume moreover that Γi ∩ Γj ∩ Γk = ∅ for every i, j, k.

Take S =
⋃
i,j(Γi ∩Γj), which is a degree 9 cluster. Then it is easy to check

that h0(C, ISωC) = ⊕5
i=0h

0(Γi,KΓi), which yields Cliff(ISωC) = −1. (see
[10, Example 5.2]).

3.4 Clifford index of invertible sheaves

The following theorem shows that the Clifford index of an invertible sheaf
is always nonnegative.

Theorem 3.14 Let C = C1∪· · ·∪Cn be a reduced curve with planar singu-
larities. Let L be an invertible sheaf such that 0 ≤ deg(L|Ci

) ≤ deg(ωC |Ci
)

for i = 1, · · · , n. Then

h0(C,L) ≤ 1

2
degL+ 1, i.e., Cliff(L) ≥ 0. (8)

13



Proof. First of all, we remark that we may assume C to be connected since
h0 and deg are additive with respect to each connected component and that
we may assume L 6∼= OC , L 6∼= ωC and h0(C,L) 6= 0, since otherwise eq. (8)
is obvious.

Consider an invertible sheaf L 6∼= OC , ωC such that 0 ≤ deg(L|Ci
) ≤

deg(ωC |Ci
) for i = 1, · · · , n, and assume that Cliff(L) is minimal. Arguing

as in the proof of Theorem 3.4 we conclude that OC ↪→ L ↪→ ωC , i.e., there
exists a subcanonical Cartier divisor S such that L ∼= ISωC (see also [10,
§2.3]). Hence it is sufficient to show that for every subcanonical Cartier
divisor S one has Cliff(ISωC) ≥ 0. We prove this result by induction on the
number of irreducible components of C. To simplify the notation we write
KC − S for the divisor such that OC(KC − S) ∼= ISωC .

If C is irreducible, the classical Clifford’s theorem holds (see [2, §III:1],
or see [10, Theorem A] for the singular case). If C is 2-connected the result
follows from [10, Theorem A, case (a)].

Therefore we are left to prove that equation (8) holds for reducible,
connected but 2-disconnected curves, i.e., we may assume that there exist
connected subcurves C1 and C2 such that C = C1∪C2 and C1∩C2 consists
of one single point P . In this case P is a smooth point for both curves and
for i = 1, 2 we can write KC |Ci

≡ KCi + P as divisors on Ci.
Take the subcanonical Cartier divisor S. Arguing as in Prop. 3.2 we

may assume that P ∩ S 6= ∅ since otherwise we can take a residual Cartier
divisor S∗.

Set S1 := S∩C1 and S2 := S∩C2. By the above argument P ∩Si 6= ∅ for
i = 1, 2, and, since P is a smooth point for each Ci, both the divisors (S1−P )
and (S2 − P ) are Cartier and effective. Moreover they are subcanonical on
both the subcurves, since a generically invertible section in H0(C,KC − S)
restricts to a generically invertible section in H0(Ci,KCi(−(Si − P ))).

The exact sequence (3) for the splitting C = C1 ∪ C2 can be written as
follows:

0→ ωC1(−S1)→ ωC(−S)→ ωC2(−(S2 − P ))→ 0.

In particular it gives rise to the inequality

h0(C,KC − S) ≤ h0(C1,KC1 − S1) + h0(C2,KC2 − (S2 − P )). (9)

On C2 we may apply our induction argument obtaining h0(C2,KC2 −
(S2 − P )) ≤ 1

2 deg(KC2 − (S2 − P )) + 1.

Now, let us consider H0(C1,KC1−S1). Counting dimensions we have either
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that h0(C1,KC1−S1) = h0(C1,KC1−S1 +P )−1 or that h0(C1,KC1−S1) =
h0(C1,KC1 − (S1 − P )).

In the first case, eq. (9) becomes

h0(C,KC − S) ≤ h0(C1,KC1 − (S1 − P ))− 1 + h0(C2,KC2 − (S2 − P )).

But S1 − P and S2 − P are subcanonical divisors on each subcurve, hence
we may apply induction on C1 and C2 obtaining

h0(C,KC − S) ≤ 1

2
deg(KC1 − (S1 − P )) + 1− 1 +

1

2
deg(KC2 − (S2 − P )) + 1

=
1

2
deg(KC − S) + 1.

In the second case, H0(C1,KC1 − S1) ∼= H0(C1,KC1 − (S1 − P )) and in
particular S1 is subcanonical on C1 too. Therefore we may apply induction
on C1 and C2 and by eq. (9) we get

h0(C,KC − S) ≤ h0(C1,KC1 − S1) + h0(C2,KC2 − (S2 − P ))

≤ 1

2
deg(KC1 − S1) + 1 +

1

2
deg(KC2 − (S2 − P )) + 1

=
1

2
deg(KC − S) +

3

2
.

To conclude the proof it is enough to show that the above inequality is strict.
We argue by contradiction. Assume that h0(C,KC−S) = 1

2 deg(KC−S)+ 3
2 .

Then necessarily

h0(C1,KC1 − S1) = 1
2 deg(KC1 − S1) + 1 ;

h0(C2,KC2 − (S2 − P )) = 1
2 deg(KC2 − (S2 − P )) + 1.

In particular degS1 must be even and degS2 must be odd. But we may
switch the roles of C1 and C2 and conclude that degS2 is even and degS1

is odd, which is clearly a contradiction. �

Remark 3.15 The above result can be extended to non-reduced curves, un-
der suitable assumptions. Indeed, the above theorem holds for 2-connected
curves, whilst in the 2-disconnected case the key point of the proof is the
existence of a a decomposition C = C1 ∪ C2 with C1.C2 = 1 such that:

(a) C1 and C2 satisfy Clifford’s inequality;

(b) P = C1 ∩ C2 is a base point for |KC | and P is a smooth point on Ci.
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In order to use point (a) we do not really need that Ci are reduced, just
that they satisfy Clifford’s inequality for some reason. E.g. 2-connected
(possibly nonreduced) curves are perfectly fine.

In order to deal with point (b) the key fact is that by Theorem 2.1 P is
a base point for |ωC | if and only if there exists a subcurve B ⊂ C such that
ωC|B ∼= ωB(P ) and P is smooth for B.

4 Green’s conjecture for certain classes of reduced
m-connected curves

Let C be a reduced curve, let H be an invertible sheaf on C and let W ⊆
H0(C,H) be a subspace which yields a base point free system of projective
dimension r.

The Koszul groups Kp,q(C,H,W ) are defined as the cohomology at the
middle of the complex

p+1∧
W ⊗H0(Hq−1) −→

p∧
W ⊗H0(Hq) −→

p−1∧
W ⊗H0(Hq+1)

If W = H0(C,H) they are usually denoted by Kp,q(C,H) (see [11] for the
definition and main results). The groups Kp,q(C,H) play a significant role
if H is very ample and normally generated since in this case Kp,q(C,H) ⊗
OPn(−p−q) are the terms of the resolution of the ideal sheaf of the embedded
curve (see [11, Thm. 2.a.15]).

If C is a Gorenstein curves with planar singularities, 3-connected and not
(honestly) hyperelliptic then by [9, Thm. 3.3] ωC is very ample and normally
generated. Therefore it is worth studying the Koszul groups Kp,q(C,ωC).
Indeed, we have the following result.

Theorem 4.1 Let C be a Gorenstein curve of aritmetic genus pa(C) ≥ 3,
with planar singularities, 3-connected and not honestly hyperelliptic. Then

• K0,q(C,ωC) = 0 for all q > 0, i.e., ωC is normally generated;

• Kp,q(C,ωC) = 0 if q ≥ 4;

• Kp,3(C,ωC) ∼= C if p = g − 2, and Kp,3(C,ωC) = 0 if p 6= g − 2;

• Kp,1(C,ωC)∨ ∼= Kg−p−2,2(C,ωC);

• Kp,1(C,ωC) = 0⇒ Kp′,1(C,ωC) = 0 ∀p′ ≥ p;
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• Kp,2(C,ωC) = 0⇒ Kp′,2(C,ωC) = 0 ∀p′ ≤ p.

Proof. K0,q(C,ωC) = 0 for all q > 0 follows by [9, Thm. 3.3]. The
remaining statements follows from the same the arguments used for smooth
curves (see [11, Thm. 4.3.1]) and by the duality results given in [8, Prop.
1.4].

�
Taking Definition 3.5 for a generalisation of the usual Clifford index,

Green’s Conjecture ([11, Conjecture 5.1] can be formulated without changes,
i.e., given a 4-connected not hyperelliptic Gorenstein curve C then one may
ask if

Kp,1(C,ωC) = 0
?⇐⇒ p ≥ pa(C)− Cliff(C)− 1.

First of all, we show that, as in the smooth case, one of the implications
holds.

Proposition 4.2 (Green-Lazarsfeld) Let C = C1 ∪ · · · ∪ Cn be a 4-
connected, not honestly hyperelliptic, reduced curve with planar singularities.
Assume Ci 6= P1 for every i = 1, · · · , n.

Then
p ≤ pa(C)− Cliff(C)− 2 =⇒ Kp,1(C,ωC) 6= 0

Proof. First of all let us point out that ωC is normally generated by Theo-
rem 4.1 and Cliff(C) ≥ 0 by Theorem 3.6.

Take a proper subcanonical cluster S such that ISωC computes the Clif-
ford index of C (cf. Theorem 3.4). Consider a generic invertible section
s0 ∈ H0(C,ωC) and let Λ := div(s0) be the effective divisor corresponding
to s0, S∗ be the residual cluster of S with respect to s0. Now, by [10, §2],
we have the following exact sequence

0→ OC ∼= IΛωC → ISωC → OS∗ → 0.

Therefore we can consider P(H0(ISωC)) as a grd, where d = deg ISωC
and h0(ISωC) = r + 1 and P(H0(IS∗ωC)) as the residual gr

′
d′ , where d′ =

deg IS∗ωC and h0(IS∗ωC) = r′ + 1. Setting

W1 = Im{H0(ISωC) ↪→ H0(ωC)}, W2 = Im{H0(IS∗ωC) ↪→ H0(ωC)}

and

D̄1 = Ann(W1) ⊂ H0(C,ωC)∨, D̄2 = Ann(W2) ⊂ H0(C,ωC)∨
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we can repeat verbatim the argument adopted by Green and Lazarsfeld in
[11, Appendix] obtaining Kr+r′−1,1(C,ωC) 6= 0.

To conclude it is enough to see that r + r′ − 1 = pa(C) − Cliff(C) − 2
since d′ = 2pa(C)− 2− d and Cliff(ISωC) = Cliff(IS∗ωC) by Serre duality.
The non vanishing of Kp,1(C,ωC) for every p < pa(C)−Cliff(C)− 2 follows
from Theorem 4.1.

�

Corollary 4.3 Let C = C1 ∪ · · · ∪ Cn be a connected reduced curve with
planar singularities. Assume Ci 6= P1 for every i = 1, · · · , n.

If C is m-connected but (m+ 1)-disconnected then Cliff(C) ≤ m− 2 and
Kp,1(C,ωC) 6= 0 if p ≤ pa(C)−m.

In the following theorem, we show that Green’s conjecture holds in the
particular case of a stable curve consisting of two smooth components inter-
secting in m distinct points.

Theorem 4.4 Let g1, g2,m be integers such that 4 ≤ m ≤ g1+1
2 and g2 ≥ 1.

Let C = C1 ∪ C2 be a stable curve given by the union of an irreducible
smooth general curve C1 of genus g1 and an irreducible smooth curve C2 of
genus g2, meeting transversally in m distinct points {x1, · · · , xm}. Then

Cliff(C) = m− 2 and Kp,1(C,ωC) = 0⇐⇒ p ≥ pa(C)− Cliff(C)− 1.

Proof. Since pa(C) = g1 + g2 +m− 1, the theorem follows if we prove that
Cliff(C) = m− 2 and Kp,1(ωC) = 0 if and only if p ≥ g1 + g2.

First of all, note that by Thm. 2.1 the linear system |ωC | yields an embed-
ding ϕ : C ↪→ Ppa(C)−1 such that ϕ(C) is the union of two curves of genus
g1 (resp. g2) and degree 2g1 − 2 +m (resp. 2g2 − 2 +m) intersecting in m
points {ϕ(x1), · · · , ϕ(xm)}.

For simplicity, we set W := H0(C,ωC) and we denote by S(W ) the sym-
metric algebra on W .

Consider the standard exact sequence

0→ OC2(−C1)→ OC → OC1 → 0.

Twisting with ω⊗qC and taking cohomology we get the following exact se-
quence of S(W )-modules,

0→
⊕
q≥0

H0(C2, ωC
⊗q
|C2

(−C1))→
⊕
q≥0

H0(C,ω⊗qC )→
⊕
q≥0

H0(C1, ωC
⊗q
|C1

))→ 0

(10)
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where the maps preserve the grading.
We emphasise that ϕ(C1) and ϕ(C2) are embedded as degenerate curves

in P(W∨), but we can still consider every term above as S(W )-modules.
Therefore we will use the notation Kp,q

(
−,−,W

)
to point out that we are

finding the resolution of the ideal of such degenerate curves (see [11, Proof
of Thm. (3.b.7)] for a similar argument).

By [11, Corollary 1.4.d, Thm. 3.b.1] we have the following exact sequence
of Koszul groups :

· · · → Kp+1,0

(
C1, ωC |C1

,W
)
→ Kp,1

(
C2,OC2(−C1), ωC |C2

,W
)
→

→ Kp,1
(
C,ωC

)
→ Kp,1

(
C1, ωC |C1

,W
)
→ · · · (11)

To deal with the above groups we consider the splittings
W = H0(C,ωC) = H0(C2, ωC |C2

)
⊕
U with U ∼= H0(C1, ωC1),

W = H0(C,ωC) = H0(C1, ωC |C1
)
⊕
Z with Z ∼= H0(C2, ωC2).

Setting s = max{0, p − g1}, t = max{0, p − g2} we have the following de-
compositions of the Koszul groups appearing in the above exact sequence:

Kp,1(C2,OC2(−C1), ωC |C2
,W
)

=
⊕

s≤p′≤p

[
Kp′,1(C2,OC2(−C1), ωC |C2

) ⊗
p−p′∧

U
]

Kp,1(C1, ωC |C1
,W ) =

⊕
t≤p′′≤p

[
Kp′′,1(C1, ωC |C1

) ⊗
p−p′′∧

Z
]

Let us study at first Kp,1(C2,OC2(−C1), ωC |C2
,W ).

Fix p′ ≤ p. By duality (cf. [8, Prop. 1.4]) and the shift properties of
Kp,q (cf. [11, (2.a.17)]), we have the following isomorphisms

Kp′,1(C2,OC2(−C1), ωC |C2
) ∼= Kg2+m−3−p′,1(C2, ωC2 ⊗OC2(C1), ωC |C2

)
∼= Kg2+m−3−p′,2(C2, ωC |C2

).

But deg(ωC |C2
) = 2g2 − 2 +m. Hence by [11, Theorem (4.a.1)]

Kg2+m−3−p′,2(C2, ωC |C2
) = 0 if g2 +m− 3− p′ ≤ m− 3.

Therefore we get

Kp,1
(
C2,OC2(−C1), ωC |C2

,W
)

= 0 if p ≥ g1 + g2. (12)

Now let us study Kp,1
(
C1, ωC |C1

,W
)
.
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By our assumption C1 is a general curve of genus g1 ≥ 2m − 1. For a
general curve of genus g1 we have Cliff(C1) =

⌊g1−1
2

⌋
and by the results of

Voisin on Green’s conjecture for smooth curves with maximal Clifford index
([19], [20]) we have Kp,1(C1, ωC1) = 0 if p ≥ g1 −

⌊g1+1
2

⌋
.

By our construction ωC |C1
∼= ωC1(C2) ∼= ωC1⊗OC1(x1 + . . .+xm), hence

by the result of Aprodu on adjoint bundles [1, Thm. 3] we get

Kp′′,1(C1, ωC) = 0 if p′′ ≥ g1 +m−
⌊
g1 + 1

2

⌋
and in particular

Kp,1
(
C1, ωC |C1

,W
)

= 0 if p ≥ g2 + g1 +m−
⌊
g1 + 1

2

⌋
. (13)

Therefore, since m ≤ g1+1
2 by our assumptions, we obtain

Kp,1
(
C1, ωC |C1

,W
)

= 0 if p ≥ g1 + g2.

Putting our vanishing results (12) and (13) into the exact sequence (11) we
deduce that

Kp,1(C,ωC) = 0 if p ≥ g1 + g2 = pa(C)− (m− 2)− 1.

To conclude the proof note that the above vanishing result implies Cliff(C) ≥
m − 2 by Proposition 4.2, whereas we have Cliff(C) ≤ m − 2 by Thm. 3.9

because m−2 ≤
⌊pa(C)−1

2

⌋
by our numerical assumptions, that is, Cliff(C) =

m− 2 and Kp,1(C,ωC) = 0 if and only if p ≥ pa(C)− Cliff(C)− 1.
�
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